GTP cyclohydrolase I phosphorylation and interaction with GTP cyclohydrolase feedback regulatory protein provide novel regulation of endothelial tetrahydrobiopterin and nitric oxide.

نویسندگان

  • Li Li
  • Amir Rezvan
  • John C Salerno
  • Ahsan Husain
  • Kihwan Kwon
  • Hanjoong Jo
  • David G Harrison
  • Wei Chen
چکیده

RATIONALE GTP cyclohydrolase I (GTPCH-1) is the rate-limiting enzyme involved in de novo biosynthesis of tetrahydrobiopterin (BH(4)), an essential cofactor for NO synthases and aromatic amino acid hydroxylases. GTPCH-1 undergoes negative feedback regulation by its end-product BH(4) via interaction with the GTP cyclohydrolase feedback regulatory protein (GFRP). Such a negative feedback mechanism should maintain cellular BH(4) levels within a very narrow range; however, we recently identified a phosphorylation site (S81) on human GTPCH-1 that markedly increases BH(4) production in response to laminar shear. OBJECTIVE We sought to define how S81 phosphorylation alters GTPCH-1 enzyme activity and how this is modulated by GFRP. METHODS AND RESULTS Using prokaryotically expressed proteins, we found that the GTPCH-1 phospho-mimetic mutant (S81D) has increased enzyme activity, reduced binding to GFRP and resistance to inhibition by GFRP compared to wild-type GTPCH-1. Using small interfering RNA or overexpressing plasmids, GFRP was shown to modulate phosphorylation of GTPCH-1, BH(4) levels, and NO production in human endothelial cells. Laminar, but not oscillatory shear stress, caused dissociation of GTPCH-1 and GFRP, promoting GTPCH-1 phosphorylation. We also found that both GTPCH-1 phosphorylation and GFRP downregulation prevents endothelial NO synthase uncoupling in response to oscillatory shear. Finally oscillatory shear was associated with impaired GTPCH-1 phosphorylation and reduced BH(4) levels in vivo. CONCLUSIONS These studies provide a new mechanism for regulation of endothelial GTPCH-1 by its phosphorylation and interplay with GFRP. This mechanism allows for escape from GFRP negative feedback and permits large amounts of BH(4) to be produced in response to laminar shear stress.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cytokines stimulate GTP cyclohydrolase I gene expression in cultured human umbilical vein endothelial cells.

In vascular endothelial cells, tetrahydrobiopterin serves as an essential cofactor required for enzymatic activity of nitric oxide synthase. GTP cyclohydrolase I is the rate-limiting enzyme in the biosynthesis of tetrahydrobiopterin. Previous studies have demonstrated that proinflammatory cytokines stimulate production of tetrahydrobiopterin in endothelial cells. Long-term regulation of GTP cyc...

متن کامل

Bacterial lipopolysaccharide down-regulates expression of GTP cyclohydrolase I feedback regulatory protein.

GTP cyclohydrolase I feedback regulatory protein (GFRP) is a 9.7-kDa protein regulating GTP cyclohydrolase I activity in dependence of tetrahydrobiopterin and phenylalanine concentrations, thus enabling stimulation of tetrahydrobiopterin biosynthesis by phenylalanine to ensure its efficient metabolism by phenylalanine hydroxylase. Here, we were interested in regulation of GFRP expression by pro...

متن کامل

Crystal structure of rat GTP cyclohydrolase I feedback regulatory protein, GFRP.

Tetrahydrobiopterin, the cofactor required for hydroxylation of aromatic amino acids regulates its own synthesis in mammals through feedback inhibition of GTP cyclohydrolase I. This mechanism is mediated by a regulatory subunit called GTP cyclohydrolase I feedback regulatory protein (GFRP). The 2.6 A resolution crystal structure of rat GFRP shows that the protein forms a pentamer. This indicate...

متن کامل

A novel high-throughput screening assay for discovery of molecules that increase cellular tetrahydrobiopterin.

Tetrahydrobiopterin (BH(4)) is an essential cofactor for the nitric oxide (NO) synthases and the aromatic amino acid hydroxylases. Insufficient BH(4) has been implicated in various cardiovascular and neurological disorders. GTP cyclohydrolase 1 (GTPCH-1) is the rate-limiting enzyme for de novo biosynthesis of BH(4). The authors have recently shown that the interaction of GTPCH-1 with GTP cycloh...

متن کامل

GTP cyclohydrolase I gene transfer augments intracellular tetrahydrobiopterin in human endothelial cells: effects on nitric oxide synthase activity, protein levels and dimerisation.

OBJECTIVES Tetrahydrobiopterin (BH4) is an essential cofactor for endothelial nitric oxide synthase (eNOS) activity. BH4 levels are regulated by de novo biosynthesis; the rate-limiting enzyme is GTP cyclohydrolase I (GTPCH). BH4 activates and promotes homodimerisation of purified eNOS protein, but the intracellular mechanisms underlying BH4-mediated eNOS regulation in endothelial cells remain l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation research

دوره 106 2  شماره 

صفحات  -

تاریخ انتشار 2010